x

RSS Newsfeeds

See all RSS Newsfeeds

Global Regions

United States ( XML Feed )

May 12, 2016 2:41 EST

BioFab In wants to increase humans life in 50%. Printing Tissue and Organ with 3D BioPrinter.

iCrowdNewswire - May 12, 2016

BioFab

BioFab.

BioFab In wants to increase humans life in 50%. Printing Tissue and Organ with 3D BioPrinter.

COMPANY OVERVIEW

In 2003, at age 79, my grandmother, who raised me and was like a mother to me died from cirrhosis. This desease, 12 years ago, in my country was associated with a life of alcohol excess. Nowadays I know that everyone who has had hepatitis is doomed to die from it and my grandmother was no exception. She had had it when she was 40. On the days previous to her death various things went trough my mind: the life of a young person seems to have more value than one from a old human being, her doctors didn’t even consider a liver transplant because of the long list of waiting patients younger than her. The second thing that called my attention was that organ donation from brain dead patients is a very difficult decision for the family and sometimes they change their mind, and its understable but makes the anguish of waiting is almost as painful as death itself.

I loved my grandmother very much, sometimes i think more than my mother, so this sad chapter of my life got me thinking: wouldn’t it be great if someone invented something to extend peoples life?

Ten years later I thought of becoming that someone and extend peoples lives with a process that starts with our Organ bank built on transformed stem cells extracted from the umbilical cord, third molar and or fat tissue, to later “print” an scaffold organ on a 3D printer and inoculate it with extracted and differentiated stem cells.

Although is very sad, I am sure that some of you are currently in the situation I lived 10 years ago or in need of a organ for yourself or know someone who needs one. Thats why I dare to ask you to join forces in the construction of a 3D biological printer: to save lives together. At this moment the BioPrinter is a designed prototype and have already ran out of funds reason why I am asking you for funds. in exchange of USD1000.00 I will cryogenate stem cells from the umbilical cord, third molar and/or fat tissue. If you can collaborate with 5000 in addition to the cryogenics we will give you cell differentiation also and to those who colaborate with more than USD10000 I offer, besides the cryogenics and cell differentiation, the elaboration of a no compact organ charging only working materials.

Why

We firmly believe in replacing organs as a viable way for life expansion. Either genetics or age our organs deteriorate and end up failing our body. Given that we work as a whole when one of our parts fail its malfunction involve other organs and forces them to compensate this shortness . I.e. When the liver stops working our kidneys pick up the slack and double or triple their functions. This excessive work will eventually lead to the organs failure and subsequent death.

How

Once identified we start building the organ needed. To achieve the right size and weight of the organ we use the person muscle mass index calculated with its own height and weight. I.e. If we wish to replace an esophagus in a person who weighs 70kg and measures 1.70 mt. (Giving us a muscle mass index of 25) we would have to built a 40 cms esophagus. We can also use a MRI to get a 3D image and get the measurements we need.

Once identified the organs dimension we start developing it by:

First, creating virtual frame for the organ in a CAD computer program, in order to do so we use the number phi as a base to recreate blood cell paths that will feed the new organs cells. We find Phi and its golden ratio all over the universe: in some mollusk, in tree structures, in sunflowers and our DNA.Biofab has created a computer program based on it and if you wish to learn more about it just let us know.

With the CAD model we fill up our first bioprinters hedpin with the Biofabhidrogel (patented) and begin to create the organ’s structure. To know more about our gel please ask us confidentiality.

Meanwhike, we obtain -by using our extraction protocol- mesenchymal stem cells from fat or the third molar.

The extracted stem cells are differentiated and cultivated depending on the organ we will print. i.e. In order to print a esophagus we need endoderm cells, if we wish to print cartilage we will need chondrocytes cells.

Printing and Vascularity of the Organ

Once we have the design and biological material we begin the printing process

Printing is done layer by layer. first a layer of Hydrogel is printed as a frame, then the differentiated stem cells. By printing first the frame we can inject up to 17 nanomilimeters of biological material in the different paths we first made: G1 path (straight), G2 (semicircle), G3 (tangent) and G4 (cotangent) .

Since printing is done from the inside out, it can leave cavities of a thickness 10 times lower than the human hair, it is through this cavities that runs blood to feed the organ bringing it to life. That is the reason the process of printing one organ can be segmented and take quite a long time, about 10 hours to print a right knee cartilage and up to 48 hours to print an esophagus.

Once the organ is printed and loaded with biological material from stem cells it is brought to a bioreactor where it will be fed and cultivated to help its cells replicate in dozens of millions.

When the feeding and vascularity processes finish then the organ is transplanted to the human body.

Our services and products

Currently we have the following services and products that have generated an interesting cash flow

1. Cryopreservation of umbilical cord stem cells, adipose tissue and the third molar – Since April, 2015

2. Differentiation and multiplication of stem cells – Since August, 2015

3. Classes for extraction, differentiation, cryopreservation and stem cell application – Since October, 2015

4. BioPrinter Biofab sales – Since November, 2015

5. Cartilage and non compact organs printing – since December , 2015

At the moment we are building a couple of printers for our costumers in Canada and China thereby expanding our services to materials sale and 3D printing training. We are also preparing our first 3D digital printing course, using our own bioprinter. At the end of 2016 we wil be touring medical and technological fairs to introduce our product to the world.

5. Where will we be in 2 years

In 2 years BioFab will increase its printing services to compact bodies, such as liver, kidney, pancreas. Also we will be selling biological printers at a lower cost than the current (USD400,000.00) and expanding our printing services to hospitals and universities on demand.

Also, today we are preparing to launch BioFab as an IPO in late 2018 at a minimum valuation of 2,000,000,000.00

KPIS

2ISSUED PATENTS
$205,000SALES
CASH FLOW POSITIVE
500USERS

COMPANY SLIDESHARE

<iframe src=”https://www.slideshare.net/slideshow/embed_code/58403143?rel=0″ width=”520″ height=”410″ frameborder=”0″ marginwidth=”0″ marginheight=”0″ scrolling=”no” allowfullscreen=”allowfullscreen”></iframe>

BLUEPRINT BIOPRINTER BIOFAB V1.X – TISSUES AN

849f4a0670efab0191b6a87e75f34ddc.jpg

fa403577698702fa72107bd751b060ff.jpg

1a0590ffdc1ad585192e617bd76c7655.jpg

ba4de974decfbe30bafb65074d852b13.jpg

52d8c20c710f73c94018182428dd877b.jpg

9bbd6f80da332ba17285958d161f4ddb.jpg

04ad1a19f3500447e4411c9859709cdc.jpg

121b6e1245ee30a7ff09d489050d05c2.jpg

TRACTION

Inspiration: BioFab, we will encrease lifespan in 50%

AUGUST, 2013

Establishing the business: Lima, Peru – http://www.razonsocialperu.com/empresa/detalle/bio-fab-s-a-c-20557157264

MAY, 2013

Developing the prosthetic prototype: May 2014 – https://youtu.be/demJTj0rLao

MAY, 2014

Agreement I+D+i with INR (National Rehabilitation Institute) – http://dina.concytec.gob.pe/appDirectorioCTI/VerDatosInvestigador.

JUNE, 2014

Copyright Perú and Bern – Prosthetic prototype – Project Taski – Learning to walk Perú 00983-2014 issued July 23rd, 2014

JULY, 2014

Agreement I+D+i 3d System – http://gftvtucanal.com/2015/03/09/biofab-impulsara-banco-de-celulas-madres/

AUGUST, 2014

Agreement I+D+i UPCH Universidad Peruana Cayetano Heredia – http://larepublica.pe/impresa/tecnociencia/4027-las-celulas-del-futuro

AUGUST, 2014

First bioprinters prototype: September 2014 – BioPrinter: BioFab X v.1 Europe DEP635462622917773228

SEPTEMBER, 2014

Sup Chile Gen 11 incubation – http://startupchile.org/here-are-the-100-startups-chosen-to-be-part-of-start-up-chile-gen-11/

NOVEMBER, 2014

BioFab Inc. is born in Delaware USA

NOVEMBER, 2014

500 StartUP acceleration – http://500.co/startup/biofab/

MARCH, 2015

Organ Bank creation – European organ ban – DEP635454829086062500

MAY, 2015

Cryogenic Stem Cells – First sale

JULY, 2015

Acceleration StartUp Peru II – http://emprende.pe/conozca-a-las-41-startups-que-recibiran-s-3-7-millones-del-estado-peruano/

AUGUST, 2015

Stem cell courses – Total sales 2015 – USD 35000.00

SEPTEMBER, 2015

Final tests: BioPrinter

FEBRUARY, 2016

First print non compact organ

FEBRUARY, 2016

TESTIMONIALS

We are establishing a prosthetic laboratory for rehabilitation research and development. Please send us the budgetary price of biofab 4500 3Dprinter including its shipping cost at Islamabad, Pakistan.
Dr. KhurramNational Centre for Physics Quaid-i-Azam Univ
Dr. Khurram
I am interested in getting a quote for your BioFab 4500. We are at the University of British Columbia, Vancouver BC, Canada
Dra. Chavez-MuñozUniversity of British Columbia, Vancouver BC,
Dra. Chavez-Muñoz
Dear Cesar,thank you for your email , do you think your company agree that we can promote via our web site your BioFab 4500 printer for simple tissue and cell layers application ? do you have any leaflet or marketing power point presentation for Biofab 4500 ? if yes we need to have an agreement or a distribution contract how do you see how you can train our sales persons ? we can do it via webex ; do you have any chance to be in france starting PROTEIGENE 7 Rue Léo Lagrange BP1134 SAINT MARCEL FRANCE
Philippe DutriatDirector
Philippe Dutriat

LEADERSHIP

Cesar Loo

Cesar Loo

Founder BioFab

Profesional en el area de Ingeniería, conocimientos de inglés, maestrías y orientado a objetivos claros y especificos. Pensando siempre en la rentabilidad para los accionistas y encaminar a la empresa y los empleados al exito profesional y personal. Científico Investigador registrado en Concytec. Investigador en Biotecnología, especialmente en el desarrollo de tejidos, cartílagos y órganos utilizando fabricación digital. Inversor de multiples empresas tradicionales tales como: Inversor sofisticado de inmuebles a nivel mundial, inversor acreditado en el mercado de capitales, y recientemente incursionando en las empresas Start up como emprendedor serial.

TOP INVESTORS

Team Member Name

500 Mexico City

The 500 Startups Hub to serve the Mexico/LatAm region. Seed Fund + Workspace + Accel + Events.
Team Member Name

Juan Lopez Salaberry

Team Member Name

Cesar Loo

Founder BioFab

Profesional en el area de Ingeniería, conocimientos de inglés, maestrías y orientado a objetivos claros y especificos. Pensando siempre en la rentabilidad…
Contact Information:

Cesar Loo

View Related News >
support